전자부품 데이터시트 검색엔진
  Korean  ▼
ALLDATASHEET.CO.KR

X  

FAN7530 데이터시트(PDF) 8 Page - Fairchild Semiconductor

부품명 FAN7530
상세설명  Interleaved Dual BCM PFC Controllers
Download  37 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
제조업체  FAIRCHILD [Fairchild Semiconductor]
홈페이지  http://www.fairchildsemi.com
Logo FAIRCHILD - Fairchild Semiconductor

FAN7530 데이터시트(HTML) 8 Page - Fairchild Semiconductor

Back Button FAN7530 Datasheet HTML 4Page - Fairchild Semiconductor FAN7530 Datasheet HTML 5Page - Fairchild Semiconductor FAN7530 Datasheet HTML 6Page - Fairchild Semiconductor FAN7530 Datasheet HTML 7Page - Fairchild Semiconductor FAN7530 Datasheet HTML 8Page - Fairchild Semiconductor FAN7530 Datasheet HTML 9Page - Fairchild Semiconductor FAN7530 Datasheet HTML 10Page - Fairchild Semiconductor FAN7530 Datasheet HTML 11Page - Fairchild Semiconductor FAN7530 Datasheet HTML 12Page - Fairchild Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 8 / 37 page
background image
© 2008 Fairchild Semiconductor Corporation
www.fairchildsemi.com
FAN9611 / FAN9612 • Rev. 1.1.3
8
Theory of Operation
1.
Boundary Conduction Mode
The boost converter is the most popular topology for
power factor correction in AC-to-DC power supplies.
This popularity can be attributed to the continuous input
current waveform provided by the boost inductor and to
the fact that the boost converter’s input voltage range
includes 0V. These fundamental properties make close
to unity power factor easier to achieve.
Figure 6. Basic PFC Boost Converter
The boost converter can operate in continuous
conduction mode (CCM) or in boundary conduction
mode (BCM). These two descriptive names refer to the
current flowing in the energy storage inductor of the
boost power stage.
Figure 7. CCM vs. BCM Control
As the names indicate, the current in Continuous
Conduction Mode (CCM) is continuous in the inductor;
while in Boundary Conduction Mode (BCM), the new
switching period is initiated when the inductor current
returns to zero.
There are many fundamental differences in CCM and
BCM operations and the respective designs of the boost
converter.
The FAN9611/12 utilizes the boundary conduction mode
control algorithm. The fundamental concept of this
operating mode is that the inductor current starts from
zero in each switching period, as shown in the lower
waveform in Figure 7. When the power transistor of the
boost converter is turned on for a fixed amount of time,
the peak inductor current is proportional to the input
voltage. Since the current waveform is triangular, the
average value in each switching period is also
proportional to the input voltage. In the case of a
sinusoidal input voltage waveform, the input current of
the converter follows the input voltage waveform with
very high accuracy and draws a sinusoidal input current
from the source. This behavior makes the boost
converter in BCM operation an ideal candidate for
power factor correction.
This mode of control of the boost converter results in a
variable switching frequency. The frequency depends
primarily
on
the
selected
output
voltage,
the
instantaneous value of the input voltage, the boost
inductor value, and the output power delivered to the
load. The operating frequency changes as the input
voltage follows the sinusoidal input voltage waveform.
The lowest frequency operation corresponds to the peak
of the sine waveform at the input of the boost converter.
Even larger frequency variation can be observed as the
output power of the converter changes, with maximum
output power resulting in the lowest operating
frequency. Theoretically, under zero-load condition, the
operating frequency of the boost converter would
approach infinity. In practice, there are natural limits to
the highest switching frequency. One such limiting factor
is the resonance between the boost inductor and the
parasitic capacitances of the MOSFET, the diode, and
the winding of the choke, in every switching cycle.
Another important characteristic of the BCM boost
converter is the high ripple current of the boost inductor,
which goes from zero to a controlled peak value in every
switching period. Accordingly, the power switch is
stressed with high peak current. In addition, the high
ripple current must be filtered by an EMI filter to meet
high-frequency
noise
regulations
enforced
for
equipment connecting to the mains. The effects usually
limit the practical output power level of the converter.


유사한 부품 번호 - FAN7530

제조업체부품명데이터시트상세설명
logo
Fairchild Semiconductor
FAN7530 FAIRCHILD-FAN7530 Datasheet
2Mb / 20P
   Critical Conduction Mode PFC Controller
FAN7530 FAIRCHILD-FAN7530 Datasheet
1Mb / 20P
   Critical Conduction Mode PFC Controller
FAN7530 FAIRCHILD-FAN7530 Datasheet
422Kb / 16P
   Design of Power Factor Correction Circuit
FAN7530M FAIRCHILD-FAN7530M Datasheet
2Mb / 20P
   Critical Conduction Mode PFC Controller
FAN7530M FAIRCHILD-FAN7530M Datasheet
1Mb / 20P
   Critical Conduction Mode PFC Controller
More results

유사한 설명 - FAN7530

제조업체부품명데이터시트상세설명
logo
Fairchild Semiconductor
FAN9611 FAIRCHILD-FAN9611 Datasheet
1Mb / 35P
   Interleaved Dual BCM PFC Controllers
FAN9611_1112 FAIRCHILD-FAN9611_1112 Datasheet
1Mb / 36P
   Interleaved Dual BCM PFC Controllers
FAN9612M FAIRCHILD-FAN9612M Datasheet
1Mb / 37P
   Interleaved Dual BCM PFC Controller
AN-9717 FAIRCHILD-AN-9717 Datasheet
5Mb / 30P
   Dual BCM PFC Controller
logo
NXP Semiconductors
TEA2376DT NXP-TEA2376DT Datasheet
483Kb / 46P
   Digital configurable interleaved PFC controller
Rev. 1 - 10 August 2023
TEA2376AT NXP-TEA2376AT Datasheet
459Kb / 43P
   Digital configurable interleaved PFC controller
Rev. 1 - 8 November 2023
TEA2376BT NXP-TEA2376BT Datasheet
466Kb / 43P
   Digital configurable interleaved PFC controller
Rev. 1 - 10 August 2023
logo
ON Semiconductor
FPAM30LH60 ONSEMI-FPAM30LH60 Datasheet
538Kb / 13P
   PFC SPM 2 Series for 2-Phase Interleaved PFC
July 2016 Rev. 1.5
FPAM50LH60 ONSEMI-FPAM50LH60 Datasheet
614Kb / 13P
   PFC SPM 2 Series for 2-Phase Interleaved PFC
June 2015 Rev. 1.4
FAN9673 ONSEMI-FAN9673 Datasheet
1Mb / 26P
   Three-Channel Interleaved CCM PFC Controller
June, 2019 ??Rev. 7
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


데이터시트 다운로드

Go To PDF Page


링크 URL




개인정보취급방침
ALLDATASHEET.CO.KR
ALLDATASHEET 가 귀하에 도움이 되셨나요?  [ DONATE ] 

Alldatasheet는?   |   광고문의   |   운영자에게 연락하기   |   개인정보취급방침   |   링크교환   |   제조사별 검색
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com