전자부품 데이터시트 검색엔진
Selected language     Korean  ▼
부품명
         상세내용
Preview PDF Download HTML-1page HTML-10pages

MC33077_04 데이터시트(Datasheet) 2 Page - ON Semiconductor

부품명 MC33077_04
상세내용  Low Noise Dual Operational Amplifier
PDF  14 Pages
Scroll/Zoom Zoom In 100% Zoom Out
제조사  ONSEMI [ON Semiconductor]
홈페이지  http://www.onsemi.com
Logo 

 
 1 page
background image
© Semiconductor Components Industries, LLC, 2004
March, 2004 − Rev. 5
1
Publication Order Number:
MC33077/D
MC33077
Low Noise Dual Operational
Amplifier
The MC33077 is a precision high quality, high frequency, low noise
monolithic dual operational amplifier employing innovative bipolar
design techniques. Precision matching coupled with a unique analog
resistor trim technique is used to obtain low input offset voltages.
Dual−doublet frequency compensation techniques are used to enhance
the gain bandwidth product of the amplifier. In addition, the MC33077
offers low input noise voltage, low temperature coefficient of input
offset voltage, high slew rate, high AC and DC open loop voltage gain
and low supply current drain. The all NPN transistor output stage
exhibits no deadband cross−over distortion, large output voltage
swing, excellent phase and gain margins, low open loop output
impedance and symmetrical source and sink AC frequency
performance.
The MC33077 is available in plastic DIP and SOIC−8 packages (P
and D suffixes).
Features
Low Voltage Noise: 4.4 nV/ Hz @ 1.0 kHz
Low Input Offset Voltage: 0.2 mV
Low TC of Input Offset Voltage: 2.0 mV/°C
High Gain Bandwidth Product: 37 MHz @ 100 kHz
High AC Voltage Gain: 370 @ 100 kHz
1850 @ 20 kHz
Unity Gain Stable: with Capacitance Loads to 500 pF
High Slew Rate: 11 V/ms
Low Total Harmonic Distortion: 0.007%
Large Output Voltage Swing: +14 V to −14.7 V
High DC Open Loop Voltage Gain: 400 k (112 dB)
High Common Mode Rejection: 107 dB
Low Power Supply Drain Current: 3.5 mA
Dual Supply Operation: ±2.5 V to ±18 V
Pb−Free Package is Available
Device
Package
Shipping
ORDERING INFORMATION
MC33077D
SOIC−8
98 Units/Rail
MC33077DR2
SOIC−8
2500 Tape & Reel
PDIP−8
P SUFFIX
CASE 626
1
8
SOIC−8
D SUFFIX
CASE 751
1
8
MARKING
DIAGRAMS
1
8
1
8
A
= Assembly Location
WL, L
= Wafer Lot
YY, Y
= Year
WW, W = Work Week
MC33077P
PDIP−8
50 Units/Rail
PIN CONNECTIONS
4
2
VEE
1
3
5
6
7
8VCC
Output 2
Inputs 2
Inputs 1
(Dual, Top View)
+
1
+
2
Output 1
33077
ALYW
MC33077P
AWL
YYWW
http://onsemi.com
MC33077DR2G
SOIC−8
(Pb−Free)
2500 Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
 2 page
background image
MC33077
http://onsemi.com
2
Q1
R1
R6
R8
R11
R16
Q17
Q19
Q13
Q11
D3
R9
C3
Q8
R3
Q6
C1
J1
Q1
D1
Q5
R2
R4
R7
R5 C2
Pos
Q7
Q9
Q10
Q12
VCC
Q21
Vout
R19
Q22
R20
Q20
C8
C7
D7
R17 R18
D6
Q14
D4
R13
C6
R14
Q16
Z1
Neg
Q4
D2
R10
R12
D5
R15
VEE
Figure 1. Representative Schematic Diagram (Each Amplifier)
Q2
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Supply Voltage (VCC to VEE)
VS
+36
V
Input Differential Voltage Range
VIDR
(Note 1)
V
Input Voltage Range
VIR
(Note 1)
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
−60 to +150
°C
ESD Protection at any Pin
− Human Body Model
− Machine Model
Vesd
550
150
V
Maximum Power Dissipation
PD
(Note 2)
mW
Operating Temperature Range
TA
−40 to + 85
°C
Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If
stress limits are exceeded device functional operation is not implied, damage may occur and reliability may be affected. Functional operation
should be restricted to the Recommended Operating Conditions.
1. Either or both input voltages should not exceed VCC or VEE (See Applications Information).
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (See power dissipation performance
characteristic, Figure 2).
 3 page
background image
MC33077
http://onsemi.com
3
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
Unit
Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
|VIO|
0.13
1.0
1.5
mV
Average Temperature Coefficient of Input Offset Voltage
RS = 10 W, VCM = 0 V, VO = 0 V, TA = −40° to +85°C
DVIO/DT
2.0
mV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIB
280
1000
1200
nA
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = −40° to +85°C
IIO
15
180
240
nA
Common Mode Input Voltage Range (
DVIO ,= 5.0 mV, VO = 0 V)
VICR
±13.5
±14
V
Large Signal Voltage Gain (VO = ±1.0 V, RL = 2.0 kW)
TA = +25°C
TA = −40° to +85°C
AVOL
150
125
400
kV/V
Output Voltage Swing (VID = ±1.0 V)
RL = 2.0 kW
RL = 2.0 kW
RL = 10 kW
RL = 10 kW
VO+
VO−
VO+
VO−
+13.0
+13.4
+13.6
−14.1
+14.0
−14.7
−13.5
−14.3
V
Common Mode Rejection (Vin = ±13 V)
CMR
85
107
dB
Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ −15 V to +5.0 V/ −5.0 V
PSR
80
90
dB
Output Short Circuit Current (VID = ±1.0 V, Output to Ground)
Source
Sink
ISC
+10
−20
+26
−33
+60
+60
mA
Power Supply Current (VO = 0 V, All Amplifiers)
TA = +25°C
TA = −40° to +85°C
ID
3.5
4.5
4.8
mA
3. Measured with VCC and VEE simultaneously varied.
 4 page
background image
MC33077
http://onsemi.com
4
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
Min
Typ
Max
Unit
Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF, AV = +1.0)
SR
8.0
11
V/
ms
Gain Bandwidth Product (f = 100 kHz)
GBW
25
37
MHz
AC Voltage Gain (RL = 2.0 kW, VO = 0 V)
f = 100 kHz
f = 20 kHz
AVO
370
1850
V/V
Unity Gain Bandwidth (Open Loop)
BW
7.5
MHz
Gain Margin (RL = 2.0 kW, CL = 10 pF)
Am
10
dB
Phase Margin (RL = 2.0 kW, CL = 10 pF)
m
55
Deg
Channel Separation (f = 20 Hz to 20 kHz, RL = 2.0 kW, VO = 10 Vpp)
CS
−120
dB
Power Bandwidth (VO = 27p−p, RL = 2.0 kW, THD ≤ 1%)
BWp
200
kHz
Distortion (RL = 2.0 kW)
AV = +1.0, f = 20 Hz to 20 kHz
VO = 3.0 VRMS
AV = 2000, f = 20 kHz
VO = 2.0 Vpp
VO = 10 Vpp
AV = 4000, f = 100 kHz
VO = 2.0 Vpp
VO = 10 Vpp
THD
0.007
0.215
0.242
0.3.19
0.316
%
Open Loop Output Impedance (VO = 0 V, f = fU)
|ZO|
36
W
Differential Input Resistance (VCM = 0 V)
Rin
270
k
W
Differential Input Capacitance (VCM = 0 V)
Cin
15
pF
Equivalent Input Noise Voltage (RS = 100 W)
f = 10 Hz
f = 1.0 kHz
en
6.7
4.4
nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
f = 10 Hz
f = 1.0 kHz
in
1.3
0.6
pA/ Hz
Figure 2. Maximum Power Dissipation
versus Temperature
Figure 3. Input Bias Current
versus Supply Voltage
TA, AMBIENT TEMPERATURE (°C)
MC33077P
MC33077D
VCC, |VEE|, SUPPLY VOLTAGE (V)
VCM = 0 V
TA = 25°C
2400
2000
1600
1200
800
400
0
800
600
400
200
0
−60 −40 −20
0
20
40
60
80
100 120 140 160 180
0
2.5
5.0
7.5
10
12.5
15
17.5
20
 5 page
background image
MC33077
http://onsemi.com
5
Figure 4. Input Bias Current
versus Temperature
Figure 5. Input Offset Voltage
versus Temperature
Figure 6. Input Bias Current versus
Common Mode Voltage
Figure 7. Input Common Mode Voltage Range
versus Temperature
Figure 8. Output Saturation Voltage versus
Load Resistance to Ground
Figure 9. Output Short Circuit Current
versus Temperature
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
VCM = 0 V
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
RS = 10 W
VCM = 0 V
AV = +1.0
VCM, COMMON MODE VOLTAGE (V)
VCC = +15 V
VEE = −15 V
TA = 25°C
TA, AMBIENT TEMPERATURE (°C)
Input
Voltage
Range
VCC = +3.0 V to +15 V
VEE = −3.0 V to −15 V
D VIO = 5.0 mV
VO = 0 V
+VCM
−VCM
RL, LOAD RESISTANCE TO GROUND (kW)
VCC = +15 V
VEE = −15 V
125
°C
25
°C
−55
°C
125
°C
25
°C
−55
°C
Sink
Source
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
VID = ±1.0 V
RL < 100 W
1000
800
600
400
200
0
1.0
0.5
0
−0.5
−1.0
600
500
400
300
200
100
0
VCC 0.0
VCC −0.5
VCC −1.0
VCC −1.5
VEE +1.5
VEE +1.0
VEE +0.5
VEE +0.0
VCC 0
VCC −2
VCC −4
VEE +4
VEE +2
VEE 0
50
40
30
20
10
−55
−25
0
25
50
75
100
125
−55
−25
0
25
50
75
100
125
−15
−10
−5.0
0
5.0
10
15
−55
−25
0
25
50
75
100
125
0
0.5
1.0
1.5
2.0
2.5
3.0
−55
−25
0
25
50
75
100
125
 6 page
background image
MC33077
http://onsemi.com
6
Figure 10. Supply Current
versus Temperature
Figure 11. Common Mode Rejection
versus Frequency
Figure 12. Power Supply Rejection
versus Frequency
Figure 13. Gain Bandwidth Product
versus Supply Voltage
Figure 14. Gain Bandwidth Product
versus Temperature
Figure 15. Maximum Output Voltage
versus Supply Voltage
±15 V
TA, AMBIENT TEMPERATURE (°C)
±5.0 V
VCM = 0 V
RL = ∞
VO = 0 V
f, FREQUENCY (Hz)
VCC = +15 V
VEE = −15 V
VCM = 0 V
D VCM = ±1.5 V
TA = 25°C
f, FREQUENCY (Hz)
−PSR
+PSR
+PSR = 20Log
DVO/ADM
D VCC
−PSR = 20Log
DVO/ADM
D VEE
RL = 10 kW
CL = 0 pF
f = 100 kHz
TA = 25°C
VCC, |VEE|, SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
f = 100 kHz
RL = 10 kW
CL = 0 pF
Vp +
Vp
VCC, |VEE|, SUPPLY VOLTAGE (V)
RL = 10 kW
RL = 10 kW
RL = 2.0 kW
RL = 2.0 kW
TA = 25°C
5.0
4.0
3.0
2.0
1.0
0
120
100
80
60
40
20
0
120
100
80
60
40
20
0
48
44
40
36
32
28
24
50
46
42
38
34
30
26
20
15
10
5.0
0
−5.0
−10
−15
−20
−55
−25
0
25
50
75
100
125
100
1.0 k
10 k
100 k
1.0 M
10 M
100
1.0 k
10 k
100 k
1.0 M
0
5
10
15
20
−55
−25
0
25
50
75
100
125
0
5.0
10
15
20
CMR = 20Log
+
ADM
D VCM
D VO
D VO
D VCM
× ADM
VCC = +15 V
VEE = −15 V
TA = 25°C
+
D VO
ADM
VEE
VCC
 7 page
background image
MC33077
http://onsemi.com
7
Figure 16. Output Voltage
versus Frequency
Figure 17. Open Loop Voltage Gain
versus Supply Voltage
Figure 18. Open Loop Voltage Gain
versus Temperature
Figure 19. Output Impedance
versus Frequency
Figure 20. Channel Separation
versus Frequency
Figure 21. Total Harmonic Distortion
versus Frequency
f, FREQUENCY (Hz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
RL = 2.0 kW
f = 10 Hz
D VO = 2/3 (VCC −VEE)
TA = 25°C
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
f = 10 Hz
D VO = −10 V to +10 V
f, FREQUENCY (Hz)
DVOD
DVin
CS = 20 Log
Drive Channel
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
DVOD = 20 Vpp
TA = 25°C
AV = +10
AV = +100
AV = +1000
f, FREQUENCY (Hz)
AV = 1000
AV = 100
AV = 10
AV = 1.0
f, FREQUENCY (Hz)
30
25
20
15
10
5.0
0
1200
1000
800
600
400
200
0
600
550
500
450
400
350
300
160
150
140
130
120
110
100
1.0
0.1
0.01
0.001
80
70
60
50
40
30
20
10
0
100
1.0 k
10 k
100 k
1.0 M
0
5.0
10
15
20
−55
−25
0
25
50
75
100
125
10
100
1.0 k
10 k
100 k
10
100
1.0 k
10 k
100 k
100
1.0 k
10 k
100 k
1.0 M
10 M
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
AV =+1.0
THD
≤ 1.0%
TA = 25°C
VCC = +15 V
VEE = −15 V
VO = 0 V
TA = 25°C
DVin
DVO
+
Measurement Channel
VCC = +15 V VO = 2.0 Vpp
VEE = −15 V TA = 25°C
Vin
VO
+
2.0k
W
RA
100k
W
AV = +1.0
 8 page
background image
MC33077
http://onsemi.com
8
AV = +1000
AV = +100
AV = +10
AV = +1.0
Figure 22. Total Harmonic Distortion
versus Frequency
Figure 23. Total Harmonic Distortion
versus Output Voltage
Figure 24. Slew Rate versus Supply Voltage
Figure 25. Slew Rate versus Temperature
Figure 26. Voltage Gain and Phase
versus Frequency
Figure 27. Open Loop Gain Margin and Phase
Margin versus Output Load Capacitance
VCC = +15 V
VEE = −15 V
V0 = −10 Vpp
TA = 25°C
f, FREQUENCY (Hz)
VO, OUTPUT VOLTAGE (Vpp)
VCC = +15 V
VEE = −15 V
f = 20 kHz
TA = 25°C
VCC, |VEE|, SUPPLY VOLTAGE (V)
Vin = 2/3 (VCC −VEE)
TA = 25°C
TA, AMBIENT TEMPERATURE (°C)
VCC = +15 V
VEE = −15 V
DVin = 20 V
f, FREQUENCY (Hz)
0
40
80
120
160
200
240
0
10
20
30
40
50
60
70
CL, OUTPUT LOAD CAPACITANCE (pF)
VCC = +15 V
VEE = −15 V
VO = 0 V
Phase
Gain
125
°C
25
°C
−55
°C
−55
°C
25
°C
125
°C
Gain
Phase
VCC = +15 V
VEE = −15 V
RL = 2.0 kW
TA = 25°C
1.0
0.1
0.01
0.001
1.0
0.5
0.1
0.05
0.01
0.005
0.001
16
12
8.0
4.0
0
40
30
20
10
0
180
140
100
60
20
−20
−60
14
12
10
8.0
6.0
4.0
2.0
0
10
100
1.0 k
10 k
100 k
0
2.0
4.0
6.0
8.0
10
12
0
2.5
5.0
7.5
10
12.5
15
17.5
20
−25
0
25
50
75
100
125
−55
10
100
1.0 k
10 k
100 k
1.0 M
10 M
100 M
1.0
10
100
1000
Vin
VO
+
2.0k
W
RA
100k
W
AV = +1000
AV = +100
AV = +10
AV = +1.0
Vin
VO
+
2.0k
W
RA
100k
W
DVin
VO
100pF
2.0k
W
+
VO
100pF
2.0k
W
+
DVin
Vin
VO
CL
2.0k
W
+
 9 page
background image
MC33077
http://onsemi.com
9
VCC = +15 V
VEE = −15 V
RT = R1 + R2
VO = 0 V
TA = 25°C
Gain
Phase
125
°C and 25°C
−55
°C
VCC = +15 V
VEE = −15 V
DVin = 100 mV
Figure 28. Phase Margin versus
Output Voltage
Figure 29. Overshoot versus
Output Load Capacitance
Figure 30. Input Referred Noise Voltage
and Current versus Frequency
Figure 31. Total Input Referred Noise Voltage
versus Source Resistant
Figure 32. Phase Margin and Gain Margin
versus Differential Source Resistance
Figure 33. Inverting Amplifier Slew Rate
VO, OUTPUT VOLTAGE (V)
VCC = +15 V
VEE = −15 V
TA = 25°C
CL = 0 pF
CL = 100 pF
CL = 300 pF
CL = 500 pF
CL, OUTPUT LOAD CAPACITANCE (pF)
f, FREQUENCY (Hz)
10
5.0
3.0
2.0
1.0
0.5
0.3
0.2
0.1
VCC = +15 V
f = 1.0 kHz
VEE = −15 V
TA = 25°C
Vn (total) =
RS, SOURCE RESISTANCE (W)
0
10
20
30
40
50
60
70
RT, DIFFERENTIAL SOURCE RESISTANCE (W)
t, TIME (2.0
ms/DIV)
70
60
50
40
30
20
10
0
100
80
60
40
20
0
100
50
30
20
10
5.0
3.0
2.0
1.0
1000
100
10
1.0
14
12
10
8.0
6.0
4.0
2.0
0
−10
−5.0
0
5.0
10
1
10
100
1000
1.0
10
100
1.0 k
10 k
100 k
10
100
1.0 k
10 k
100 k
1.0 M
1.0
10
100
1.0 k
10 k
Vin
VO
CL
2.0k
W
+
VO
100pF
2.0k
W
+
DVin
VCC = +15 V
VEE = −15 V
TA = 25°C
Voltage
Current
R2
VO
+
Vin
R1
(inRs)
2 ) en2 ) 4KTRS
VCC = +15 V
VEE = −15 V
AV = −1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C
 10 page
background image
MC33077
http://onsemi.com
10
Figure 34. Non−inverting Amplifier Slew Rate
Figure 35. Non−inverting Amplifier Overshoot
Figure 36. Low Frequency Noise Voltage
versus Time
t, TIME (2.0
ms/DIV)
t, TIME (200 ns/DIV)
t, TIME (1.0 sec/DIV)
VCC = +15 V
VEE = −15 V
AV = +1.0
RL = 2.0 kW
TA = 25°C
CL = 0 pF
CL = 100 pF
VCC = +15 V
VEE = −15 V
BW = 0.1 Hz to 10 Hz
TA = 25°C
See Noise Circuit
(Figure 36)
VCC = +15 V
VEE = −15 V
AV = +1.0
RL = 2.0 kW
CL = 100 pF
TA = 25°C




Html 페이지

1  2  3  4  5  6  7  8  9  10  11  12  13  14 


데이터시트



관련 부품명

부품명상세내용Html View제조사
TL072LOW NOISE DUAL J-FET OPERATIONAL AMPLIFIER 1 2 3 4 5 MoreUnisonic Technologies
LMV7165 MHz Low Noise RRO Dual Operational Amplifier with CMOS Input 1 2 3 4 5 MoreNational Semiconductor (TI)
LM833_05Low Noise Audio Dual Operational Amplifier 1 2 3 4 5 MoreON Semiconductor
TL062_05LOW POWER DUAL J-FET OPERATIONAL AMPLIFIER 1 2 3 4 5 MoreUnisonic Technologies
LM2904W_06Low power dual operational amplifier 1 2 3 4 5 MoreSTMicroelectronics
OPA2604_06Dual FET-Input Low Distortion OPERATIONAL AMPLIFIER 1 2 3 4 5 MoreBurr-Brown (TI)
ADN28803.2 Gbps 3.3 V Low Noise Transimpedance Amplifier 1 2 3 4 5 MoreAnalog Devices
UPC2713T1.2 GHz LOW NOISE WIDE BAND AMPLIFIER SILICON BIPOLAR MONOLITHIC INTEGRATED CIRCUIT 1 2 3 4 5 NEC
WHM2535-12AE2.5 - 3.5 GHz LOW NOISE AMPLIFIER WHM2535-12AE 1 2 3 4 5 List of Unclassifed Manufacturers

링크 URL


Privacy Policy
ALLDATASHEET.CO.KR
ALLDATASHEET 가 귀하에 도움이 되셨나요?  [ DONATE ]  

Alldatasheet는?   |   광고문의    |   운영자에게 연락하기   |   개인정보취급방침   |   즐겨찾기   |   링크교환   |   제조사별 검색
All Rights Reserved© Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn