전자부품 데이터시트 검색엔진
  Korean  ▼
ALLDATASHEET.CO.KR

X  

CS51411G 데이터시트(PDF) 6 Page - ON Semiconductor

부품명 CS51411G
상세설명  1.5A, 260 kHz AND 520 kHz, LOW VOLTAGE BUCK REGULATORS WITH EXTERNAL BIAS OR SYNCHRONIZATION CAPABILITY
Download  16 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
제조업체  ONSEMI [ON Semiconductor]
홈페이지  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

CS51411G 데이터시트(HTML) 6 Page - ON Semiconductor

Back Button CS51411G Datasheet HTML 2Page - ON Semiconductor CS51411G Datasheet HTML 3Page - ON Semiconductor CS51411G Datasheet HTML 4Page - ON Semiconductor CS51411G Datasheet HTML 5Page - ON Semiconductor CS51411G Datasheet HTML 6Page - ON Semiconductor CS51411G Datasheet HTML 7Page - ON Semiconductor CS51411G Datasheet HTML 8Page - ON Semiconductor CS51411G Datasheet HTML 9Page - ON Semiconductor CS51411G Datasheet HTML 10Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 6 / 16 page
background image
CS51411, CS51412, CS51413, CS51414
http://onsemi.com
6
APPLICATIONS INFORMATION
THEORY OF OPERATION
V2 Control
The CS5141X family of buck regulators provides leading
edge technology, a high level of integration and high
operating frequencies allowing the layout of a switch–mode
power supply in a very small board area. These devices are
based on the proprietary V2 control architecture. V2 control
uses the output voltage and its ripple as the ramp signal,
providing an ease of use not generally associated with
voltage or current mode control. Improved line regulation,
load regulation and very fast transient response are also
major advantages.
Figure 3. Buck Converter with V2 Control.
Buck
Controller
FFB
VREF
+
Duty Cycle
V2 Control
Error
Amplifier
PWM
Comparator
R1
Oscillator
VO
SFB
VIN
Latch
Slope
Comp
L1
C1
D1
R2
S
R
VC
S1
As shown in Figure 3, there are two voltage feedback
paths in V2 control, namely FFB(Fast Feedback) and
SFB(Slow Feedback). In FFB path, the feedback voltage
connects directly to the PWM comparator. This feedback
path carries the ramp signal as well as the output DC voltage.
Artificial ramp derived from oscillator is added to the
feedback signal to improve stability. The other feedback
path SFB connects the feedback voltage to the error
amplifier whose output VC feeds to the other input of the
PWM comparator. In a constant frequency mode, the
oscillator signal sets the output latch and turns on the switch
S1. This starts a new switch cycle. The ramp signal,
composed of both artificial ramp and output ripple,
eventually comes across the VC voltage, and consequently
resets the latch to turn off the switch. The switch S1 will turn
on again at the beginning of the next switch cycle. In a buck
converter, the output ripple is determined by the ripple
current of the inductor L1 and the ESR (equivalent series
resistor) of the output capacitor C1.
The slope compensation signal is a fixed voltage ramp
provided by the oscillator. Adding this signal eliminates
subharmonic oscillation associated with the operation at
duty cycle greater than 50%. The artificial ramp also ensures
the proper PWM function when the output ripple voltage is
inadequate. The slope compensation signal is properly sized
to serve it purposes without sacrificing the transient
response speed.
Under load and line transient, not only the ramp signal
changes, but more significantly the DC component of the
feedback voltage varies proportionally to the output voltage.
FFB path connects both signals directly to the PWM
comparator. This allows instant modulation of the duty cycle
to counteract any output voltage deviations. The transient
response time is independent of the error amplifier
bandwidth. This eliminates the delay associated with error
amplifier and greatly improves the transient response time.
The error amplifier is used here to ensure excellent DC
accuracy.
Error Amplifier
The CS5141X has a transconductance error amplifier,
whose non–inverting input is connected to an Internal
Reference Voltage generated from the on–chip regulator.
The inverting input connects to the VFB pin. The output of
the error amplifier is made available at the VC pin. A typical
frequency compensation requires only a 0.1
µF capacitor
connected between the VC pin and ground, as shown in
Figure 1. This capacitor and error amplifier’s output
resistance (approximately 8.0 M
Ω) create a low frequency
pole to limit the bandwidth. Since V2 control does not
require a high bandwidth error amplifier, the frequency
compensation is greatly simplified.
The VC pin is clamped below Output High Voltage. This
allows the regulator to recover quickly from over current or
short circuit conditions.
Oscillator and Sync Feature (CS51411 and CS51413 only)
The on–chip oscillator is trimmed at the factory and
requires no external components for frequency control. The
high
switching
frequency
allows
smaller
external
components to be used, resulting in a board area and cost
savings. The tight frequency tolerance simplifies magnetic
components selection. The switching frequency is reduced
to 25% of the nominal value when the VFB pin voltage is
below Frequency Foldback Threshold. In short circuit or
over–load conditions, this reduces the power dissipation of
the IC and external components.
An external clock signal can sync CS51411/CS51414 to
a higher frequency. The rising edge of the sync pulse turns
on the power switch to start a new switching cycle, as shown
in Figure 4. There is approximately 0.5
µs delay between the
rising edge of the sync pulse and rising edge of the VSW pin
voltage. The sync threshold is TTL logic compatible, and
duty cycle of the sync pulses can vary from 10% to 90%. The


유사한 부품 번호 - CS51411G

제조업체부품명데이터시트상세설명
logo
ON Semiconductor
CS51411G ONSEMI-CS51411G Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51411GD8 ONSEMI-CS51411GD8 Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51411GD8 ONSEMI-CS51411GD8 Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51411GD8G ONSEMI-CS51411GD8G Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51411GD8G ONSEMI-CS51411GD8G Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
More results

유사한 설명 - CS51411G

제조업체부품명데이터시트상세설명
logo
ON Semiconductor
CS51411 ONSEMI-CS51411_07 Datasheet
252Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
February, 2007 ??Rev. 17
CS51411-D ONSEMI-CS51411-D Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51411 ONSEMI-CS51411_12 Datasheet
290Kb / 20P
   1.5 A, 260 kHz and 520 kHz Low Voltage Buck Regulators with External Bias or Synchronization Capability
November, 2012 ??Rev. 20
NCV51411 ONSEMI-NCV51411 Datasheet
182Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV51411 ONSEMI-NCV51411 Datasheet
224Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV8842 ONSEMI-NCV8842_11 Datasheet
377Kb / 16P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
July, 2011 ??Rev. 10
NCV8842 ONSEMI-NCV8842 Datasheet
180Kb / 15P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCV8843 ONSEMI-NCV8843 Datasheet
187Kb / 15P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCP1546 ONSEMI-NCP1546 Datasheet
152Kb / 13P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
March, 2007 ??Rev. 0
NCV8843 ONSEMI-NCV8843_10 Datasheet
385Kb / 16P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 10
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16


데이터시트 다운로드

Go To PDF Page


링크 URL




개인정보취급방침
ALLDATASHEET.CO.KR
ALLDATASHEET 가 귀하에 도움이 되셨나요?  [ DONATE ] 

Alldatasheet는?   |   광고문의   |   운영자에게 연락하기   |   개인정보취급방침   |   링크교환   |   제조사별 검색
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com