전자부품 데이터시트 검색엔진
  Korean  ▼
ALLDATASHEET.CO.KR

X  

CS51414GDR8G 데이터시트(PDF) 10 Page - ON Semiconductor

부품명 CS51414GDR8G
상세설명  1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
Download  20 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
제조업체  ONSEMI [ON Semiconductor]
홈페이지  http://www.onsemi.com
Logo ONSEMI - ON Semiconductor

CS51414GDR8G 데이터시트(HTML) 10 Page - ON Semiconductor

Back Button CS51414GDR8G Datasheet HTML 6Page - ON Semiconductor CS51414GDR8G Datasheet HTML 7Page - ON Semiconductor CS51414GDR8G Datasheet HTML 8Page - ON Semiconductor CS51414GDR8G Datasheet HTML 9Page - ON Semiconductor CS51414GDR8G Datasheet HTML 10Page - ON Semiconductor CS51414GDR8G Datasheet HTML 11Page - ON Semiconductor CS51414GDR8G Datasheet HTML 12Page - ON Semiconductor CS51414GDR8G Datasheet HTML 13Page - ON Semiconductor CS51414GDR8G Datasheet HTML 14Page - ON Semiconductor Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 20 page
background image
CS51411, CS51412, CS51413, CS51414
http://onsemi.com
10
independent of switching duty cycle. The maximum load
current, given by the following formula under continuous
conduction mode, is less than the Current Limit due to the
ripple current.
IO(MAX) + ILIM *
VO(VIN * VO)
2(L)(VIN)(fs)
where:
fS = switching frequency,
ILIM = current limit threshold,
VO = output voltage,
VIN = input voltage,
L = inductor value.
When the regulator runs undercurrent limit, the
subharmonic
oscillation
may
cause
low
frequency
oscillation, as shown in Figure 13. Similar to current mode
control, this oscillation occurs at the duty cycle greater than
50% and can be alleviated by using a larger inductor value.
The current limit threshold is reduced to Foldback Current
when the FB pin falls below Foldback Threshold. This
feature protects the IC and external components under the
power up or overload conditions.
Figure 13. The Regulator in Current Limit
BOOST Pin
The BOOST pin provides base driving current for the
power switch. A voltage higher than VIN provides required
headroom to turn on the power switch. This in turn reduces
IC power dissipation and improves overall system
efficiency. The BOOST pin can be connected to an external
boost−strapping circuit which typically uses a 0.1
mF capacitor
and a 1N914 or 1N4148 diode, as shown in Figure 1. When the
power switch is turned on, the voltage on the BOOST pin is
equal to
VBOOST + VIN ) VO * VF
where:
VF = diode forward voltage.
The anode of the diode can be connected to any DC voltage
other than the regulated output voltage. However, the
maximum voltage on the BOOST pin shall not exceed 40 V.
As shown in Figure 14, the BOOST pin current includes a
constant 7.0 mA predriver current and base current
proportional to switch conducting current. A detailed
discussion of this current is conducted in Thermal
Consideration section. A 0.1
mF capacitor is usually adequate
for maintaining the Boost pin voltage during the on time.
BIAS Pin (CS51412 and CS51414 Only)
The BIAS pin allows a secondary power supply to bias the
control circuitry of the IC. The BIAS pin voltage should be
between 3.3 V and 6.0 V. If the BIAS pin voltage falls below
that range, use a diode to prevent current drain from the
BIAS pin. Powering the IC with a voltage lower than the
regulator’s input voltage reduces the IC power dissipation
and improves energy transfer efficiency.
Figure 14. The Boost Pin Current Includes 7.0 mA
Predriver Current and Base Current when the Switch
is Turned On. The Beta Decline of the Power Switch
Further Increases the Base Current at High
Switching Current
0
0.5
1.0
1.5
SWITCHING CURRENT (A)
0
5
10
15
20
25
30
Shutdown
The internal power switch will not turn on until the VIN pin
rises above the Startup Voltage. This ensures no switching
until adequate supply voltage is provided to the IC.
The IC enters a sleep mode when the SHDNB pin is pulled
below Shutdown Threshold Voltage. In the sleep mode, the
power switch keeps open and the supply current reduces to
Shutdown Quiescent Current. This pin has internal pull−up
current. So when this pin is not used, leave the SHDNB pin
open.
Startup
During power up, the regulator tends to quickly charge up
the output capacitors to reach voltage regulation. This gives
rise to an excessive in−rush current which can be detrimental
to the inductor, IC and catch diode. In V2 control, the
compensation capacitor provides Soft−Start with no need
for extra pin or circuitry. During the power up, the Output
Source Current of the error amplifier charges the
compensation capacitor which forces VC pin and thus output
voltage ramp up gradually.


유사한 부품 번호 - CS51414GDR8G

제조업체부품명데이터시트상세설명
logo
ON Semiconductor
CS51414GDR8G ONSEMI-CS51414GDR8G Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51414GDR8G ONSEMI-CS51414GDR8G Datasheet
283Kb / 20P
   Low Voltage Buck Regulators
May, 2013 ??Rev. 21
More results

유사한 설명 - CS51414GDR8G

제조업체부품명데이터시트상세설명
logo
ON Semiconductor
CS51411-D ONSEMI-CS51411-D Datasheet
706Kb / 20P
   1.5 A, 260 kHz and 520 kHz, Low Voltage Buck Regulators with External Bias or Synchronization Capability
September, 2007 - Rev. 18
CS51411 ONSEMI-CS51411_12 Datasheet
290Kb / 20P
   1.5 A, 260 kHz and 520 kHz Low Voltage Buck Regulators with External Bias or Synchronization Capability
November, 2012 ??Rev. 20
CS51411 ONSEMI-CS51411 Datasheet
489Kb / 16P
   1.5A, 260 kHz AND 520 kHz, LOW VOLTAGE BUCK REGULATORS WITH EXTERNAL BIAS OR SYNCHRONIZATION CAPABILITY
September, 2002 ??Rev. 11
NCV51411 ONSEMI-NCV51411 Datasheet
182Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV51411 ONSEMI-NCV51411 Datasheet
224Kb / 16P
   1.5 A, 260 kHz, Low Voltage Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 15
NCV8842 ONSEMI-NCV8842_11 Datasheet
377Kb / 16P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
July, 2011 ??Rev. 10
NCV8842 ONSEMI-NCV8842 Datasheet
180Kb / 15P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCV8843 ONSEMI-NCV8843 Datasheet
187Kb / 15P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
October, 2006 ??Rev. 1
NCP1546 ONSEMI-NCP1546 Datasheet
152Kb / 13P
   1.5 A, 170 kHz, Buck Regulator with Synchronization Capability
March, 2007 ??Rev. 0
NCV8843 ONSEMI-NCV8843_10 Datasheet
385Kb / 16P
   1.5 A, 340 kHz, Buck Regulator with Synchronization Capability
May, 2010 ??Rev. 10
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20


데이터시트 다운로드

Go To PDF Page


링크 URL




개인정보취급방침
ALLDATASHEET.CO.KR
ALLDATASHEET 가 귀하에 도움이 되셨나요?  [ DONATE ] 

Alldatasheet는?   |   광고문의   |   운영자에게 연락하기   |   개인정보취급방침   |   링크교환   |   제조사별 검색
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com