전자부품 데이터시트 검색엔진
  Korean  ▼
ALLDATASHEET.CO.KR

X  

AD600 데이터시트(PDF) 10 Page - Analog Devices

부품명 AD600
상세설명  Dual, Low Noise, Wideband Variable Gain Amplifiers
Download  20 Pages
Scroll/Zoom Zoom In 100%  Zoom Out
제조업체  AD [Analog Devices]
홈페이지  http://www.analog.com
Logo AD - Analog Devices

AD600 데이터시트(HTML) 10 Page - Analog Devices

Back Button AD600 Datasheet HTML 6Page - Analog Devices AD600 Datasheet HTML 7Page - Analog Devices AD600 Datasheet HTML 8Page - Analog Devices AD600 Datasheet HTML 9Page - Analog Devices AD600 Datasheet HTML 10Page - Analog Devices AD600 Datasheet HTML 11Page - Analog Devices AD600 Datasheet HTML 12Page - Analog Devices AD600 Datasheet HTML 13Page - Analog Devices AD600 Datasheet HTML 14Page - Analog Devices Next Button
Zoom Inzoom in Zoom Outzoom out
 10 / 20 page
background image
AD600/AD602
REV. A
–10–
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
REF
A1
A2
C1HI
A1CM
A1OP
VPOS
VNEG
A2OP
A2CM
C2HI
C1LO
A1HI
A1LO
GAT1
GAT2
A2LO
A2HI
C2LO
V '
G
C1
100pF
C4
0.1
µF
R3
46.4k
R4
3.74k
R1
100
AD600
+5V
DEC
–5V
DEC
RF
INPUT
AD590
R2
806
1%
C3
15pF
300
µA
(at 300K)
Q1
2N3904
VPTAT
RF
OUTPUT
0.1
µF
0.1
µF
FB
–5V
+5V
POWER SUPPLY
DECOUPLING NETWORK
+5V DEC
–5V DEC
+5V
C2
1
µF
+5V
FB
Figure 15. This Accurate HF AGC Amplifier Uses Just Three Active Components
A simple half-wave detector is used, based on Q1 and R2. The
average current into capacitor C2 is just the difference between
the current provided by the AD590 (300
µA at 300 K, 27°C)
and the collector current of Q1. In turn, the control voltage VG
is the time integral of this error current. When VG (and thus the
gain) is stable, the rectified current in Q1 must, on average, ex-
actly balance the current in the AD590. If the output of A2 is
too small to do this, VG will ramp up, causing the gain to in-
crease, until Q1 conducts sufficiently. The operation of this
control system will now be described in detail.
First, consider the particular case where R2 is zero and the out-
put voltage VOUT is a square wave at, say, 100 kHz, that is, well
above the corner frequency of the control loop. During the time
VOUT is negative, Q1 conducts; when VOUT is positive, it is cut
off. Since the average collector current is forced to be 300
µA, and
the square wave has a 50% duty-cycle, the current when con-
ducting must be 600
µA. With R2 omitted, the peak value of
VOUT would be just the VBE of Q1 at 600 µA (typically about
700 mV) or 2 VBE peak-to-peak. This voltage, hence the ampli-
tude at which the output stabilizes, has a strong negative tem-
perature coefficient (TC), typically –1.7 mV/
°C. While this may
not be troublesome in some applications, the correct value of R2
will render the output stable with temperature.
To understand this, first note that the current in the AD590 is
closely proportional to absolute temperature (PTAT). (In fact,
this IC is intended for use as a thermometer.) For the moment,
continue to assume that the signal is a square wave. When Q1 is
conducting, VOUT is the now the sum of VBE and a voltage which
is PTAT and which can be chosen to have an equal but opposite
TC to that of the base-to-emitter voltage. This is actually noth-
ing more than the “bandgap voltage reference” principle in
thinly veiled disguise! When we choose R2 such that the sum of
the voltage across it and the VBE of Q1 is close to the bandgap
voltage of about 1.2 V, VOUT will be stable over a wide range of
temperatures, provided, of course, that Q1 and the AD590
share the same thermal environment.
Since the average emitter current is 600
µA during each half-
cycle of the square wave, a resistor of 833
Ω would add a PTAT
voltage of 500 mV at 300 K, increasing by 1.66 mV/
°C. In prac-
tice, the optimum value of R2 will depend on the transistor
used, and, to a lesser extent, on the waveform for which the tem-
perature stability is to be optimized; for the devices shown and
sine wave signals, the recommended value is 806
Ω. This resistor
also serves to lower the peak current in Q1 and the 200 Hz LP
filter it forms with C2 helps to minimize distortion due to ripple
in VG. Note that the output amplitude under sine wave condi-
tions will be higher than for a square wave, since the average
value of the current for an ideal rectifer would be 0.637 times as
large, causing the output amplitude to be 1.88 (= 1.2/0.637) V,
or 1.33 V rms. In practice, the somewhat nonideal rectifier
results in the sine wave output being regulated to about
1.275 V rms.
An offset of +375 mV is applied to the inverting gain-control
inputs C1LO and C2LO. Thus the nominal –625 mV to
+625 mV range for VG is translated upwards (at VG´) to –0.25 V
for minimum gain to +1 V for maximum gain. This prevents Q1
from going into heavy saturation at low gains and leaves suffi-
cient “headroom” of 4 V for the AD590 to operate correctly at
high gains when using a +5 V supply.
In fact, the 6 dB interstage attenuator means that the overall
gain of this AGC system actually runs from –6 dB to +74 dB.
Thus, an input of 2 V rms would be required to produce a 1 V
rms output at the minimum gain, which exceeds the 1 V rms
maximum input specification of the AD600. The available gain
range is therefore 0 dB to 74 dB (or, X1 to X5000). Since the
gain scaling is 15.625 mV/dB (because of the cascaded stages)
the minimum value of VG´ is actually increased by 6 × 15.625 mV,
or about 94 mV, to –156 mV, so the risk of saturation in Q1 is
reduced.


유사한 부품 번호 - AD600

제조업체부품명데이터시트상세설명
logo
Analog Devices
AD600 AD-AD600 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AQ AD-AD600AQ Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR AD-AD600AR Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR-REEL AD-AD600AR-REEL Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600AR-REEL7 AD-AD600AR-REEL7 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
More results

유사한 설명 - AD600

제조업체부품명데이터시트상세설명
logo
Analog Devices
AD602 AD-AD602_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD600 AD-AD600_06 Datasheet
588Kb / 28P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. E
AD600 AD-AD600_15 Datasheet
677Kb / 33P
   Dual, Low Noise, Wideband Variable Gain Amplifiers
Rev. F
AD8366 AD-AD8366_17 Datasheet
1Mb / 28P
   Dual-Digital Variable Gain Amplifiers
logo
National Semiconductor ...
LMH6622 NSC-LMH6622 Datasheet
540Kb / 18P
   Dual Wideband, Low Noise, 160MHz, Operational Amplifiers
logo
Texas Instruments
LMH6504 TI1-LMH6504_14 Datasheet
1Mb / 29P
[Old version datasheet]   Wideband, Low Power, Variable Gain Amplifier
logo
National Semiconductor ...
LMH6504 NSC-LMH6504 Datasheet
759Kb / 19P
   Wideband, Low Power, Variable Gain Amplifier
logo
Analog Devices
ADRF6510 AD-ADRF6510_17 Datasheet
1Mb / 32P
   Dual Programmable Filters Variable Gain Amplifiers
logo
DAICO Industries, Inc.
DAML6273 DAICO-DAML6273 Datasheet
176Kb / 1P
   Variable Gain Low Noise Amplifier
DAML6275 DAICO-DAML6275 Datasheet
157Kb / 1P
   Variable Gain Low Noise Amplifier
More results


Html Pages

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20


데이터시트 다운로드

Go To PDF Page


링크 URL




개인정보취급방침
ALLDATASHEET.CO.KR
ALLDATASHEET 가 귀하에 도움이 되셨나요?  [ DONATE ] 

Alldatasheet는?   |   광고문의   |   운영자에게 연락하기   |   개인정보취급방침   |   링크교환   |   제조사별 검색
All Rights Reserved©Alldatasheet.com


Mirror Sites
English : Alldatasheet.com  |   English : Alldatasheet.net  |   Chinese : Alldatasheetcn.com  |   German : Alldatasheetde.com  |   Japanese : Alldatasheet.jp
Russian : Alldatasheetru.com  |   Korean : Alldatasheet.co.kr  |   Spanish : Alldatasheet.es  |   French : Alldatasheet.fr  |   Italian : Alldatasheetit.com
Portuguese : Alldatasheetpt.com  |   Polish : Alldatasheet.pl  |   Vietnamese : Alldatasheet.vn
Indian : Alldatasheet.in  |   Mexican : Alldatasheet.com.mx  |   British : Alldatasheet.co.uk  |   New Zealand : Alldatasheet.co.nz
Family Site : ic2ic.com  |   icmetro.com